
pescador Documentation
Release

Brian McFee and Eric Humphrey

February 23, 2016

Contents

1 Simple example 1
1.1 Batch generators . 1
1.2 StreamLearner . 2

2 Advanced example 5
2.1 Streamers . 5
2.2 Stream re-use and multiplexing . 5

3 API Reference 7
3.1 The Streamer object . 7
3.2 The StreamLearner object . 7
3.3 Stream manipulation . 7
3.4 Parallelism . 9

4 Changes 11
4.1 Changes . 11

5 Contribute 13
5.1 Indices and tables . 13

Python Module Index 15

i

ii

CHAPTER 1

Simple example

This document will walk through the basics of training models using pescador.

Our running example will be learning from an infinite stream of stochastically perturbed samples from the Iris dataset.

Before we can get started, we’ll need to introduce a few core concepts. We will assume some basic familiarity with
scikit-learn and generators.

1.1 Batch generators

Not all python generators are valid for machine learning. Pescador assumes that generators produce output in a
particular format, which we will refer to as a batch. Specifically, a batch is a python dictionary containing np.ndarray.
For unsupervised learning (e.g., MiniBatchKMeans), valid batches contain only one key: X. For supervised learning
(e.g., SGDClassifier), valid batches must contain both X and Y keys, both of equal length.

Here’s a simple example generator that draws random batches of data from Iris of a specified batch_size, and adds
gaussian noise to the features.

1 import numpy as np
2

3 def noisy_samples(X, Y, batch_size=16, sigma=1.0):
4 '''Generate an infinite stream of noisy samples from a labeled dataset.
5

6 Parameters
7 ----------
8 X : np.ndarray, shape=(n, d)
9 Features

10

11 Y : np.ndarray, shape=(n,)
12 Labels
13

14 batch_size : int > 0
15 Size of the batches to generate
16

17 sigma : float > 0
18 Variance of the additive noise
19

20 Yields
21 ------
22 batch
23 '''
24

1

http://scikit-learn.org/stable/
https://wiki.python.org/moin/Generators

pescador Documentation, Release

25

26 n, d = X.shape
27

28 while True:
29 i = np.random.randint(0, n, size=m)
30

31 noise = sigma * np.random.randn(batch_size, d)
32

33 yield dict(X=X[i] + noise, Y=Y[i])

In the code above, data_stream is an iterator that can be sampled indefinitely because noisy_samples contains an
infinite loop. Each iterate of data_stream will be a dictionary containing the sample batch’s features and labels.

1.2 StreamLearner

Many scikit-learn classes provide an iterative learning interface via partial_fit(), which can update an existing model
after observing a new batch of samples. Pescador provides an additional layer (StreamLearner) which interfaces
between batch generators and partial_fit().

The following example illustrates how to use StreamLearner.

1 from __future__ import print_function
2

3 import sklearn.datasets
4 from sklearn.cross_validation import ShuffleSplit
5 from sklearn.linear_model import SGDClassifier
6 from sklearn.metrics import accuracy_score
7

8 import pescador
9

10 # Load the Iris dataset
11 data = sklearn.datasets.load_iris()
12 X, Y = data.data, data.target
13

14 # Get the space of class labels
15 classes = np.unique(Y)
16

17 # Generate a single 90/10 train/test split
18 for train, test in ShuffleSplit(len(X), n_iter=1, test_size=0.1)
19

20 # Instantiate a linear classifier
21 estimator = SGDClassifier()
22

23 # Wrap the estimator object in a stream learner
24 model = pescador.StreamLearner(estimator, max_batches=1000)
25

26 # Build a data stream
27 batch_stream = noisy_samples(X[train], Y[train])
28

29 # Fit the model to the stream
30 model.iter_fit(batch_stream, classes=classes)
31

32 # And report the accuracy
33 print('Test accuracy: {:.3f}'.format(accuracy_score(Y[test],
34 model.predict(X[test]))))

A few things to note here:

2 Chapter 1. Simple example

pescador Documentation, Release

• Because noisy_samples is an infinite generator, we need to provide an explicit bound on the amount of samples
to draw when fitting. This is done in line 20 with the max_batches parameter to StreamLearner.

• StreamLearner objects transparently wrap the methods of their contained estimator object, so
model.predict(X[test]) and model.estimator.predict(X[test]) are equivalent.

1.2. StreamLearner 3

pescador Documentation, Release

4 Chapter 1. Simple example

CHAPTER 2

Advanced example

This document will walk through advanced usage of pescador.

We will assume a working understanding of the simple example in the previous section.

2.1 Streamers

Generators in python have a couple of limitations for common stream learning pipelines. First, once instantiated, a
generator cannot be “restarted”. Second, an instantiated generator cannot be serialized directly, so they are difficult to
use in distributed computation environments.

Pescador provides the Streamer object to circumvent these issues. Streamer simply provides an object container for
an uninstantiated generator (and its parameters), and an access method generate(). Calling generate() multiple times
on a streamer object is equivalent to restarting the generator, and can therefore be used to simply implement multiple
pass streams. Similarly, because Streamer can be serialized, it is simple to pass a streamer object to a separate process
for parallel computation.

Here’s a simple example, using the generator from the previous section.

1 import pescador
2

3 streamer = pescador.Streamer(noisy_samples, X[train], Y[train])
4

5 batch_stream2 = streamer.generate()

Iterating over streamer.generate() is equivalent to iterating over noisy_samples(X[train], Y[train]).

Additionally, Streamer can be bounded easily by saying streamer.generate(max_batches=N) for some N maximum
number of batches.

2.2 Stream re-use and multiplexing

The mux() function provides a powerful interface for randomly interleaving samples from multiple input streams. mux
can also dynamically activate and deactivate individual Streamers, which allows it to operate on a bounded subset of
streams at any given time.

As a concrete example, we can simulate a mixture of noisy streams with differing variances.

1 for train, test in ShuffleSplit(len(X), n_iter=1, test_size=0.1)
2

3 # Instantiate a linear classifier

5

pescador Documentation, Release

4 estimator = SGDClassifier()
5

6 # Wrap the estimator object in a stream learner
7 model = pescador.StreamLearner(estimator, max_batches=1000)
8

9 # Build a collection of streams with different variance scales
10 streams = [noisy_samples(X[train], Y[train], sigma=sigma)
11 for sigma in [0.5, 1.0, 2.0, 4.0]]
12

13 # Build a mux stream, keeping only 2 streams alive at once
14 batch_stream = pescador.mux(streams,
15 1000, # Generate 1000 batches in total
16 2, # Keep 2 streams alive at once
17 lam=16) # Use a poisson rate of 16
18

19

20 # Fit the model to the stream
21 model.iter_fit(batch_stream, classes=classes)
22

23 # And report the accuracy
24 print('Test accuracy: {:.3f}'.format(accuracy_score(Y[test],
25 model.predict(X[test]))))

In the above example, each noisy_samples streamer is infinite. The lam=16 argument to mux says that each stream
should produce some n batches, where n is sampled from a Poisson distribution of rate lam. When a stream exceeds
its bound, it is deactivated, and a new stream is activated to fill its place.

Setting lam=None disables the random stream bounding, and mux() simply runs each active stream until exhaustion.

Streams can be sampled with or without replacement according to the with_replacement option. Setting this parameter
to False means that each stream can be active at most once.

Streams can also be sampled with non-uniform weighting by specifying a vector pool_weights.

Finally, exhausted streams can be removed by setting prune_empty_seeds to True. If False, then exhausted streams
may be reactivated at any time.

Note that because mux() itself is a generator, it too can be wrapped in a Streamer object.

6 Chapter 2. Advanced example

CHAPTER 3

API Reference

3.1 The Streamer object

3.2 The StreamLearner object

3.3 Stream manipulation

Utility functions for stream manipulations

mux(seed_pool, n_samples, k[, lam, ...]) Stochastic multiplexor for generator seeds.
buffer_batch(generator, buffer_size) Buffer an iterable of batches into larger (or smaller) batches
buffer_streamer(streamer, buffer_size, ...) Buffer a stream of batches
batch_length(batch) Determine the number of samples in a batch.

3.3.1 util.mux

util.mux(seed_pool, n_samples, k, lam=256.0, pool_weights=None, with_replacement=True,
prune_empty_seeds=True, revive=False)

Stochastic multiplexor for generator seeds.

Given an array of Streamer objects, do the following:

1.Select k seeds at random to activate

2.Assign each activated seed a sample count ~ Poisson(lam)

3.Yield samples from the streams by randomly multiplexing from the active set.

4.When a stream is exhausted, select a new one from the pool.

Parameters seed_pool : iterable of Streamer

The collection of Streamer objects

n_samples : int > 0 or None

The number of samples to generate. If None, sample indefinitely.

k : int > 0

The number of streams to keep active at any time.

7

pescador Documentation, Release

lam : float > 0 or None

Rate parameter for the Poisson distribution governing sample counts for individual
streams. If None, sample infinitely from each stream.

pool_weights : np.ndarray or None

Optional weighting for seed_pool. If None, then weights are assumed to
be uniform. Otherwise, pool_weights[i] defines the sampling proportion of
seed_pool[i].

Must have the same length as seed_pool.

with_replacement : bool

Sample Streamers with replacement. This allows a single stream to be used multiple
times (even simultaneously). If False, then each Streamer is consumed at most once
and never revisited.

prune_empty_seeds : bool

Disable seeds from the pool that produced no data. If True, Streamers that previously
produced no data are never revisited. Note that this may be undesireable for streams
where past emptiness may not imply future emptiness.

revive: bool

If with_replacement is False, setting revive=True will re-insert previously
exhausted seeds into the candidate set.

This configuration allows a seed to be active at most once at any time.

3.3.2 util.buffer_batch

util.buffer_batch(generator, buffer_size)
Buffer an iterable of batches into larger (or smaller) batches

Parameters generator : iterable

The generator to buffer

buffer_size : int > 0

The number of examples to retain per batch.

Yields batch

A batch of size at most buffer_size

3.3.3 util.buffer_streamer

util.buffer_streamer(streamer, buffer_size, *args, **kwargs)
Buffer a stream of batches

Parameters streamer : pescador.Streamer

The streamer object to buffer

buffer_size : int > 0

the number of examples to retain per batch

Yields batch

8 Chapter 3. API Reference

pescador Documentation, Release

A batch of size at most buffer_size

See also:

buffer_batch

3.3.4 util.batch_length

util.batch_length(batch)
Determine the number of samples in a batch.

Parameters batch : dict

A batch dictionary. Each value must implement len. All values must have the same len.

Returns n : int >= 0 or None

The number of samples in this batch. If the batch has no fields, n is None.

Raises RuntimeError

If some two values have unequal length

3.4 Parallelism

ZMQ-baesd stream multiplexing

zmq_stream(streamer[, max_batches, ...]) Parallel data streaming over zeromq sockets.

3.4.1 zmq_stream.zmq_stream

zmq_stream.zmq_stream(streamer, max_batches=None, min_port=49152, max_port=65535,
max_tries=100, copy=False, timeout=None)

Parallel data streaming over zeromq sockets.

This allows a data generator to run in a separate process from the consumer.

A typical usage pattern is to construct a Streamer object from a generator (or util.mux of several Streamer‘s),
and then use ‘zmq_stream to execute the stream in one process while the other process consumes data, e.g., with
a StreamLearner object.

Parameters streamer : pescador.Streamer

The streamer object

max_batches : None or int > 0

Maximum number of batches to generate

min_port : int > 0

max_port : int > min_port

The range of TCP ports to use

max_tries : int > 0

The maximum number of connection attempts to make

copy : bool

3.4. Parallelism 9

pescador Documentation, Release

Set True to enable data copying

Yields batch

Data drawn from streamer.generate(max_batches).

10 Chapter 3. API Reference

CHAPTER 4

Changes

4.1 Changes

4.1.1 v0.1.2

• Added pescador.mux parameter revive. Calling with with_replacement=False, revive=True will use each
seed at most once at any given time.

• Added pescador.zmq_stream parameter timeout. Setting this to a positive number will terminate dangling
worker threads after timeout is exceeded on join. See also: multiprocessing.Process.join.

4.1.2 v0.1.1

• pescador.mux now throws a RuntimeError exception if the seed pool is empty

4.1.3 v0.1.0

Initial public release

11

pescador Documentation, Release

12 Chapter 4. Changes

CHAPTER 5

Contribute

• Issue Tracker

• Source Code

5.1 Indices and tables

• genindex

• modindex

• search

13

http://github.com/bmcfee/pescador/issues
http://github.com/bmcfee/pescador

pescador Documentation, Release

14 Chapter 5. Contribute

Python Module Index

p
pescador, 7

u
util, 7

z
zmq_stream, 9

15

pescador Documentation, Release

16 Python Module Index

Index

B
batch_length() (in module util), 9
buffer_batch() (in module util), 8
buffer_streamer() (in module util), 8

M
mux() (in module util), 7

P
pescador (module), 7

U
util (module), 7

Z
zmq_stream (module), 9
zmq_stream() (in module zmq_stream), 9

17

	Simple example
	Batch generators
	StreamLearner

	Advanced example
	Streamers
	Stream re-use and multiplexing

	API Reference
	The Streamer object
	The StreamLearner object
	Stream manipulation
	Parallelism

	Changes
	Changes

	Contribute
	Indices and tables

	Python Module Index

